3.309 \(\int \frac{1}{(a+b x^n)^2 (c+d x^n)} \, dx\)

Optimal. Leaf size=122 \[ \frac{b x (a d (1-2 n)-b c (1-n)) \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{b x^n}{a}\right )}{a^2 n (b c-a d)^2}+\frac{d^2 x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{d x^n}{c}\right )}{c (b c-a d)^2}+\frac{b x}{a n (b c-a d) \left (a+b x^n\right )} \]

[Out]

(b*x)/(a*(b*c - a*d)*n*(a + b*x^n)) + (b*(a*d*(1 - 2*n) - b*c*(1 - n))*x*Hypergeometric2F1[1, n^(-1), 1 + n^(-
1), -((b*x^n)/a)])/(a^2*(b*c - a*d)^2*n) + (d^2*x*Hypergeometric2F1[1, n^(-1), 1 + n^(-1), -((d*x^n)/c)])/(c*(
b*c - a*d)^2)

________________________________________________________________________________________

Rubi [A]  time = 0.142295, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {414, 522, 245} \[ \frac{b x (a d (1-2 n)-b c (1-n)) \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{b x^n}{a}\right )}{a^2 n (b c-a d)^2}+\frac{d^2 x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{d x^n}{c}\right )}{c (b c-a d)^2}+\frac{b x}{a n (b c-a d) \left (a+b x^n\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x^n)^2*(c + d*x^n)),x]

[Out]

(b*x)/(a*(b*c - a*d)*n*(a + b*x^n)) + (b*(a*d*(1 - 2*n) - b*c*(1 - n))*x*Hypergeometric2F1[1, n^(-1), 1 + n^(-
1), -((b*x^n)/a)])/(a^2*(b*c - a*d)^2*n) + (d^2*x*Hypergeometric2F1[1, n^(-1), 1 + n^(-1), -((d*x^n)/c)])/(c*(
b*c - a*d)^2)

Rule 414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1)*
(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d,
 n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomial
Q[a, b, c, d, n, p, q, x]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 245

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, -((b*x^n)/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b x^n\right )^2 \left (c+d x^n\right )} \, dx &=\frac{b x}{a (b c-a d) n \left (a+b x^n\right )}-\frac{\int \frac{a d n+b (c-c n)+b d (1-n) x^n}{\left (a+b x^n\right ) \left (c+d x^n\right )} \, dx}{a (b c-a d) n}\\ &=\frac{b x}{a (b c-a d) n \left (a+b x^n\right )}+\frac{d^2 \int \frac{1}{c+d x^n} \, dx}{(b c-a d)^2}+\frac{(b (a d (1-2 n)-b c (1-n))) \int \frac{1}{a+b x^n} \, dx}{a (b c-a d)^2 n}\\ &=\frac{b x}{a (b c-a d) n \left (a+b x^n\right )}+\frac{b (a d (1-2 n)-b c (1-n)) x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{b x^n}{a}\right )}{a^2 (b c-a d)^2 n}+\frac{d^2 x \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{d x^n}{c}\right )}{c (b c-a d)^2}\\ \end{align*}

Mathematica [A]  time = 0.150821, size = 108, normalized size = 0.89 \[ \frac{x \left (\frac{b^2 c-a b d}{a^2 n+a b n x^n}+\frac{b (a d (1-2 n)+b c (n-1)) \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{b x^n}{a}\right )}{a^2 n}+\frac{d^2 \, _2F_1\left (1,\frac{1}{n};1+\frac{1}{n};-\frac{d x^n}{c}\right )}{c}\right )}{(b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x^n)^2*(c + d*x^n)),x]

[Out]

(x*((b^2*c - a*b*d)/(a^2*n + a*b*n*x^n) + (b*(a*d*(1 - 2*n) + b*c*(-1 + n))*Hypergeometric2F1[1, n^(-1), 1 + n
^(-1), -((b*x^n)/a)])/(a^2*n) + (d^2*Hypergeometric2F1[1, n^(-1), 1 + n^(-1), -((d*x^n)/c)])/c))/(b*c - a*d)^2

________________________________________________________________________________________

Maple [F]  time = 0.719, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{ \left ( a+b{x}^{n} \right ) ^{2} \left ( c+d{x}^{n} \right ) }}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*x^n)^2/(c+d*x^n),x)

[Out]

int(1/(a+b*x^n)^2/(c+d*x^n),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} d^{2} \int \frac{1}{b^{2} c^{3} - 2 \, a b c^{2} d + a^{2} c d^{2} +{\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )} x^{n}}\,{d x} -{\left (a b d{\left (2 \, n - 1\right )} - b^{2} c{\left (n - 1\right )}\right )} \int \frac{1}{a^{2} b^{2} c^{2} n - 2 \, a^{3} b c d n + a^{4} d^{2} n +{\left (a b^{3} c^{2} n - 2 \, a^{2} b^{2} c d n + a^{3} b d^{2} n\right )} x^{n}}\,{d x} + \frac{b x}{a^{2} b c n - a^{3} d n +{\left (a b^{2} c n - a^{2} b d n\right )} x^{n}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x^n)^2/(c+d*x^n),x, algorithm="maxima")

[Out]

d^2*integrate(1/(b^2*c^3 - 2*a*b*c^2*d + a^2*c*d^2 + (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)*x^n), x) - (a*b*d*(2*
n - 1) - b^2*c*(n - 1))*integrate(1/(a^2*b^2*c^2*n - 2*a^3*b*c*d*n + a^4*d^2*n + (a*b^3*c^2*n - 2*a^2*b^2*c*d*
n + a^3*b*d^2*n)*x^n), x) + b*x/(a^2*b*c*n - a^3*d*n + (a*b^2*c*n - a^2*b*d*n)*x^n)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{b^{2} d x^{3 \, n} + a^{2} c +{\left (b^{2} c + 2 \, a b d\right )} x^{2 \, n} +{\left (2 \, a b c + a^{2} d\right )} x^{n}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x^n)^2/(c+d*x^n),x, algorithm="fricas")

[Out]

integral(1/(b^2*d*x^(3*n) + a^2*c + (b^2*c + 2*a*b*d)*x^(2*n) + (2*a*b*c + a^2*d)*x^n), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b x^{n}\right )^{2} \left (c + d x^{n}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x**n)**2/(c+d*x**n),x)

[Out]

Integral(1/((a + b*x**n)**2*(c + d*x**n)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{n} + a\right )}^{2}{\left (d x^{n} + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x^n)^2/(c+d*x^n),x, algorithm="giac")

[Out]

integrate(1/((b*x^n + a)^2*(d*x^n + c)), x)